A new refinement of Jensen's inequality in linear spaces with applications

نویسنده

  • Sever Silvestru Dragomir
چکیده

A new refinement of Jensen’s celebrated inequality for functions defined on convex sets in linear spaces is given. Applications for norms, mean f -deviation and f -divergences are provided as well.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A REFINEMENT OF JENSEN’S INEQUALITY WITH APPLICATIONS FOR f-DIVERGENCE MEASURES

A refinement of the discrete Jensen’s inequality for convex functions defined on a convex subset in linear spaces is given. Application for f -divergence measures including the Kullback-Leibler and Jeffreys divergences are provided as well.

متن کامل

STABILITY OF THE JENSEN'S FUNCTIONAL EQUATION IN MULTI-FUZZY NORMED SPACES

In this paper, we define the notion of (dual) multi-fuzzy normedspaces and describe some properties of them. We then investigate Ulam-Hyers stability of Jensen's functional equation for mappings from linear spaces into  multi-fuzzy normed spaces. We establish an asymptotic behavior of the Jensen equation in the framework of multi-fuzzy normed spaces.

متن کامل

An Inequality Improving the Second Hermite-hadamard Inequality for Convex Functions Defined on Linear Spaces and Applications for Semi-inner Products

An inequality for convex functions defined on linear spaces is obtained which contains in a particular case a refinement for the second part of the celebrated Hermite-Hadamard inequality. Applications for semi-inner products on normed linear spaces are also provided.

متن کامل

An Inequality Improving the First Hermite-hadamard Inequality for Convex Functions Defined on Linear Spaces and Applications for Semi-inner Products

An integral inequality for convex functions defined on linear spaces is obtained which contains in a particular case a refinement for the first part of the celebrated HermiteHadamard inequality. Applications for semi-inner products on normed linear spaces are also provided.

متن کامل

On generalization of refinement of Jensen’s inequality using Fink’s identity and Abel-Gontscharoff Green function

In this paper, we formulate new Abel-Gontscharoff type identities involving new Green functions for the 'two-point right focal' problem. We use Fink's identity and a new Abel-Gontscharoff-type Green's function for a 'two-point right focal' to generalize the refinement of Jensen's inequality given in (Horváth and Pečarić in Math. Inequal. Appl. 14: 777-791, 2011) from convex function to higher o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Mathematical and Computer Modelling

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2010